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The purpose of this document is to explore the use of a microwave cavity in order to measure the dielectric
properties of STO. The goal of the measurement is to find the dielectric constant and its lost tangent as a
function of both frequency and bias voltage. In order for this measurement to be relevant to us, it must be
done at high frequencies (∼ 150GHz) and at low temperatures (< 4K).

Figure 1: Geometry showing our dielectric test setup. We have a WR10-waveguide (grey) that is aperture
coupled to a rectangular cavity (blue). A dielectric (orange) is glued onto one surface of the cavity. We can
measure the resonance frequency shift and the change in Q of the first cavity mode with and without the
dielectric. These two quantities can be used to find the complex dielectric constant. Additionally we can
bias the rectangular cavity to bias the dielectric sample to measure its paraelectric behavior.

1 Rectangular cavity modes

Rectangular waveguide cavity resonators are treated in Pozar in section 6.3. The resonant frequency of an
unloaded TEmn` or TMmn` mode is,
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and we have the corresponding fields. For a TEmn` mode we have the following fields with all the prefactors
removed (look it up in Pozar 3.2 and don’t forget about the 2 or 2j factor)
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The VNA at Princeton operates in the WR-10 band (70−110GHz). The cleanest measurement of dielectric
constant would have the fundamental mode in band. Any cavity perturbation would decrease the resonant
frequency, so we want the fundamental mode (TE101) to be on the upper side of the band.

2 Dielectric cavity perturbation

Perturbation of the cavity resonator would cause a shift in the resonant frequency of the cavity. The equation
is derived in Pozar 6.7, and the complex form in Sheen’s Amendment of cavity perturbation technique for
loss tangent measurement at microwave frequency in the Journal of Applied physics 102, 014102 (2007).
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where the integral in the numerator only integrates over the region where the cavity is perturbed. The ∆ε
and ∆µ are the dielectric perturbation and in general complex. This form isn’t the most useful. We first
want to take complex frequency ω = 2πfb(1 + j/2Q0). If we assume that the material is non-magnetic
∆µ = 0 and seperate the dielectric component piece into εSTO = ε′ + jε′′, then,
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so by measuring the dielectric shift and the change in quality factor we can estimate both the dielectric
constant and the loss tangent

3 DC Biasing

We can bias the dielectric by applying a DC voltage to one of the sides of the cavity and grounding all other
sides. If we have a very flat rectangular box as our cavity, then we expect to have parallel plate like fields
near the center of the cavity. We can confirm this hypothesis by solving Laplace’s equation in a cavity using
DC boundary conditions,

∇2V = 0, V (x, y, z = d) = V0 (11)

with V (x, y, z) = 0 on all other surfaces. Laplace’s equation, ∂2V
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the surface
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We get solutions,
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so the general solution to Laplace’s equation will be,
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and we can apply the boundary condition at V (x, y, z = d) and use the orthogonality of sines in order to
find the coefficients,
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So only odd n,m will have nonzero cmn. We plot the voltage at z = 0.05mm where the middle of the
dielectric sample would sit. The figure 2 show that a cavity of dimensions 10mm × 10mm × 1.5mm would
produce uniform electric field in the center of the cavity that is suitable for biasing our STO-sample.
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Figure 2: Voltage in the z-plane of a cavity at z = 0.05mm. A dielectric sample that is 5 × 5 × 0.1mm3

glued to the center of the cavity would feel a uniform electric field. The bias to the cavity is 1V , so we can
adjust the fields by increasing or decreasing this bias voltage.

4 Waveguide cavity simulations

4.1 Unloaded cavities

We have to consider two primary factors in designing an optimal waveguide cavity.

(i) The resonant cavity ideally has its fundamental mode in the WR10 waveguide band (70-110GHz).
Equation 8 is maximized if we have high E and H fields where our dielectric sample is located. The
fundamental mode maximizes power at the center of the resonant cavity - higher order modes will have
power spread further away from the center.

(ii) The resonant cavity is excited in predictable ways. While many resonant modes may be allowed
for given dimensions, not all modes will be excited by a given aperture placement. For a 2-port
cavity operating in the fundamental mode, shown in figure 3, we have very predictable behavior. A
fundamental waveguide mode is excited in band. Observing this resonant frequency shift would allow
for the measurement outlined above. The difficulty in getting a sample small enough to fit into this
cavity (2.54mm×1.27mm×2mm). For a 2-port cavity with the aperture on the side as shown in figure
4, we excite TEn0` modes. If we increase the Z dimensions, we get a whole mess of modes which would
be horrendous to disentangle. Note that the transmission amplitudes s21 in figure 4 is low. This is
because the fundamental mode in the input waveguide will scatter into higher order modes and spread
its power over many different modes.
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Figure 3: Simulation of a small cavity at the first resonance TE101. The cavity has dimensions (2.54×1.27×
2mm3). The small cavity produces a single resonance we can observe in band.

Figure 4: Large cavity that would be easy to slot in a large STO sample, simulated at the TE306 mode. We
see that we have a huge amount of overlapping resonances, which we can understand in principle understand
but would be a pain to disintangle in measurement.
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4.2 Loaded cavities

STO can have an extremely high dielectric constant. This might be a problem because the resonance
may move out of band. This is shown in figure 5. The resonance shifts to lower frequency, as we
expect. However for the large εr = 20, the fundamental modes drops to below the cutoff frequency
of the waveguide - which we would be unable to observe both because its cutoff and out of band.
Additionally we see that total transmission s21 decreases, but reflection goes up. This is likely due to
the impedance of the cavity changing, so we need to tune the aperture to maximize our signal. This is
difficult apriori to the measurement.

Figure 5: Simulation of a small cavity with a lossy dielectric with εr = 4, 20 and tan δ = 0.5. We can see that
the fundamental mode shifts with the introduction with the dielectric, and decreases the total transmission.
For large ε, the resonance shifts to below the cutoff frequency of the waveguide.
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