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The purpose of this document is to provide an theoretical analysis of a partially filled waveguide cavity
with a dielectric. This analysis will inform how to best do a measurement of dielectric loss and dielectric.
The analysis in this document follows from Robert E Collins, Field Theory of Guided Waves 2nd ed. in the
chapter Inhomogeneously Filled Waveguides and Dielectric Resonators. I’ll elaborate on the actual modal
structure in the rectangular waveguides, and extend the analysis to cavities.

1 Partially filled rectangular waveguide

(a) (b)

Figure 1: Two types of filling geometries (a) side filled, (b) bottom filled.

The introduction of a dielectric in a rectangular waveguide changes the type of propagating modes.
Modes in a dielectric filled waveguide are tranverse electric or traverse magnetic. With the introduction of
a interface, the fundamental modes are hybrid modes, characterized by the lack of ~E field normal to the
dielectric interface, called longitudinal section electric (LSE) mode, or by the lack of ~H field normal to
the interface called longitudinal section magnetic (LSM) mode . We can make sense of this from figure
2. Because we’re going to eventually couple our partially filled waveguide with a regular bare waveguide
operating with a TE10 mode, we don’t have to do the full analysis. We only need to look at LSE modes for
type (1a) and LSM modes for type (1b).

1



k̂~E

k̂

~E

k̂~E

εr

ε0

Figure 2: An intuitive explanation for why partially filled waveguides lack transverse modes. Internal
reflection inside the dielectric is pictured here, for the waveguide geometry shown in figure (1b). Matching

the electric field at the dielectric boundary would force ~E in the ẑ direction, so we cannot have tranverse
electric or magnetic fields. If we have total internal reflection, then the fields in vacuum would be evanescent.

1.1 Longitudinal section electric (LSE) Modes
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Figure 3: Asymmetrical dielectric slab-loaded waveguide. This geometry is studied in this section.

Analytic Results For the LSE mode, we need to find the magnetic Hertzian potential. Because the
dielectric is placed normal to x̂, the potential has the form Πh = x̂ψh(x, y)e−jβz with the corresponding
fields,

~E = −jωµ0∇×Πh

~H = ∇×∇×Πh

and the Hertz potential solves the wave equation,

∇2Πh + k2Πh =

(
∂2

∂x2
+

∂2

∂y2
+ (κ(x)k0 − β2)

)
ψh(x, y) = 0

where,

κ(x) =

{
εr 0 ≤ x < t

1 t < x ≤ a
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A solution to the differential equation is of the form,

ψh =

{
A sin `x cos mπyb 0 ≤ x < t

B sinh(a− x) cos mπyb t < x ≤ a

and the relationship between the wavenumbers in the two regions (h, `) are related by,

−β2 = `2 +
(mπ
b

)2
− εrk20 = h2 +

(mπ
b

)2
− k20 (1)

This condition is apparent if we plug in our ansantz for the two regions, and enforcing that the propagation
constant of the mode β is the same in both regions (otherwise it wouldn’t be a normal mode!). We will now
show how this ansantz satisfies the boundary conditions (that E‖ = 0, H⊥ = 0 for metallic surfaces). The
electric field dropping off constants for the region inside the dielectric

E< = −jωµ0

 x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

A sin `x cos mπyb e−jβz 0 0

 ∝ −jβ sin `x cos
mπy

b
e−jβz ŷ − mπ

b
sin `x sin

mπy

b
e−jβz ẑ

We see that Ey = 0 and Ez = 0 at the boundary x = 0, so we have no electric fields parallel to the side
walls. Additionally Ez = 0 at the base y = 0, so there’s no electric fields parallel to the base. Now for H
fields,

H< = ∇×

 x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

A sin `x cos mπyb e−jβz 0 0

 ∝
 x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

0 sin `x cos mπyb e−jβz sin `x sin mπy
b e−jβz


∝ x̂

(mπ
b

sin `x cos
mπy

b
e−jβz − jβ sin `x cos

mπy

b
e−jβz

)
+ ŷ

(
` cos `x sin

mπy

b
e−jβz

)
+ ẑ

(
` cos `x cos

mπy

b
e−jβz

)
So Hx disappears when x = 0, Hy disappears when y = 0, b. So we have no magnetic fields perpendicular to
the waveguide boundary. The condition at x = a can be repeated,

E> = −jωµ0

 x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

B> sinh(a− x) cos mπyb e−jβz 0 0

 ∝ −jβ sinh(a− x) cos
mπy

b
e−jβz ŷ − mπ

b
sinh(a− x) sin

mπy

b
e−jβz ẑ

which we immediately see that at x = a, Ey = 0, Ez = 0. For the magnetic field,

H> = ∇×

 x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

B sinh(a− x) cos mπyb e−jβz 0 0

 ∝
 x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

0 sinh(a− x) cos mπyb e−jβz sinh(a− x) sin mπy
b e−jβz


∝ x̂

(mπ
b

sinh(a− x) cos
mπy

b
e−jβz − jβ sinh(a− x) cos

mπy

b
e−jβz

)
+ ŷ

(
−h cosh(a− x) sin

mπy

b
e−jβz

)
+ ẑ

(
−h cosh(a− x) cos

mπy

b
e−jβz

)
so Hy disappears when x = a and Hy disappears when y = 0, b. So this ansantz fully satisfies the boundary
conditions at the walls of the waveguide.

Now we have to impose the continuity expressions at x = t. Ez must be continuous and Hy is continuous,

A sin `t = B sinhd

A` cos `t = −Bh coshd

which we can eliminate the constants by dividing the equations together,

h tan `t = −` tanhd (2)
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Equation 1 and equation 2 together is the key to finding the modal structure. Before we plug these equations
into Matlab to mindlessly churn, there’s physical insight to keep in mind or you’ll miss key physical features
of this system.
Key features of analytic expressions

i ` and h are the wavenumbers in the dielectric and air region of the waveguide.

ii h is allowed to be real or imaginary.

iii A real h indicates propagation of power in both the dielectric and air regions.

iv An imaginary h has power propagating along the dielectric only, with evanescent modes in the air region.
This is just like an optical fiber.

v Even if we have a solution to the transcendental equation, the mode may not propagate. We have to
check whether β is real or imaginary.

vi Modes with m = 0 look like TEn0 modes.

Example We can take one example to illustrate the solution process. Figure 4 illustrates the modes in the
waveguide in k-space, marked by the zeros of the function. The numericals values are inspired by WR-10.
We study a guide with a = 2.54mm, b = 1.27mm with a 0.5mm thick εr = 4 dielectric. We study the system
at 2 frequencies at f0 = 100, 200GHz. The plot of equation 2 rearranged to be,

f(l) = h tan(`(h)t) + `(h) tan(hd)

The contour plot underneath the plot is the real value of β from equation 1. Blue indicates no real part to
β, indicating that the solution is imaginary and therefore the modes don’t propagate.

Figure 4: The zeros of the function illustrates modes in rectangular waveguide with top being 100GHz and
bottom being at 200GHz.

Solutions with purely imaginary h have waves of total internal reflection at the boundary, so the modes
are evanescent in air. Solutions with purely real h have propagating waves in both the dielectric and in air.
At low frequencies, only dielectric modes propagate, illustrated by being the only allowed mode in the upper
100GHz plot. At high frequencies, in the bottom 200GHz plot, we have two dielectric modes and two hybrid
modes that are allowed to propagate.

HFSS Confirmation We can simulate this easily in HFSS. We illustrate two modes. In this document,
I’m not going to bother with showing the analytical fields, but it’s easy to do. It’s important to carry all
the numerical constants in order for the fields to match at the two boundaries.

Take-away points The reason you should pay attention to this is because this informs how the waveguide
cavity should be set up. This analysis shows that we in fact have modes with ~E that has the apperance of
rectangular TE modes (although the ~H fields don’t look nearly the same), which indicate we can in principal
feed a waveguide cavity efficiently. However the analysis also shows certain modes are hopeless to drive -
the dielectric modes of type (a) will be hopeless to drive even though they are the first modes to be allowed
to propagate in the guide. Figure 5b instead would be much more natural to drive but is counterintuitive
purely looking at s-parameters because these are high order modes in this waveguide.
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(a) (b)

Figure 5: ~E field distributions of simulated waveguide modes. (a) shows the fundamental mode, with power
propagating along the dielectric and evanescent in air. (b) shows propagation of the hybrid mode in both
air and dielectric. The simulated cutoffs are 84GHz and 107GHz respectively, in agreement with numerical
results.

1.2 Longitudinal section magnetic (LSM) Modes

b

a

x̂

ŷ
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Figure 6: Asymmetrical dielectric slab-loaded waveguide. This geometry is studied in this section.

Analytic Results For the LSM modes, we need an electric Hertzian potential. Because the dielectric is
placed normal to ŷ, the potential has the form, Πe = ŷψe(x, y)e−jβz, with the corresponding fields,

H = jωε0κ(y)∇×Πe

E = ∇×∇×Πe

and the Hertzian potential solves the wave equation,

∇2Πe + k2Πe =

(
∂2

∂x2
+

∂2

∂y2
+ (κ(y)k0 − β2)

)
ψe(x, y) = 0

where,

κ(y) =

{
εr 0 ≤ y < t

1 t < y ≤ b
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A solution to the differential equation is of the form,

ψe =

{
A sin nπx

a cos `y 0 ≤ y < t

B sin nπx
a cosh(b− y) t < y ≤ b

and we get the same relationship from plugging in this ansantz in the wave equation,

−β2 = `2 +
(nπ
a

)2
− εrk20 = h2 +

(nπ
a

)2
− k20 (3)

Now we’re going to show that this ansantz satisfies boundary conditions that E‖ = 0 and H⊥ = 0 along the
boundary of the waveguide. Inside the dielectric,

H< = jωεrεr

 x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

0 A sin nπx
a cos `ye−jβz 0

 ∝ −x̂jβ sin
nπx

a
cos `ye−jβz + ẑ

nπ

a
cos

nπx

a
cos `ye−jβz

At the boundaries x = 0, a, the magnetic field Hx = 0 so that there is no magnetic field perpendicular to
the side walls. At y = 0, there is no Hy so no magnetic field is perpendicular to the base.

E< = ∇×∇×Πe =

 x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

−jβ sin nπx
a cos `ye−jβz 0 nπ

a cos nπxa cos `ye−jβz


= x̂

(
−nπ
a
` cos

nπx

a
sin `ye−jβz

)
+ ŷ

(
β2 sin

nπx

a
cos `ye−jβz − n2π2

a2
sin

nπx

a
cos `ye−jβz

)
+ ẑ

(
β` sin

nπx

a
sin `ye−jβz

)
We can see that at the boundaries x = 0, a, both Ez = 0, Ey = 0 so there is no electric fields parallel to the
side walls. The base y = 0, there is also no Ez = 0, so all boundary conditions in the dielectric portion is
fulfilled. We can repeat the analysis for the top.

H> = jωε0

 x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

0 B sin nπx
a cosh(b− y)e−jβz 0

 ∝ −x̂jβ sin
nπx

a
cosh(b− y)e−jβz + ẑ

nπ

a
cos

nπx

a
cosh(b− y)e−jβz

at the boundary y = b there is no Hy fields so we satisfy the boundary condition of the top wall. As x = 0, a,
the term Hx = 0, so we have no perpendicular H fields in the upper portion.

E> = ∇×∇×Πe =

 x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

−jβ sin nπx
a cosh(b− y)e−jβz 0 nπ

a cos nπxa cosh(b− y)e−jβz


= x̂

(
−nπ
a
h cos

nπx

a
sinh(b− y)e−jβz

)
+ ŷ

(
−n

2π2

a2
sin

nπx

a
cosh(b− y)e−jβz + β2 sin

nπx

a
cosh(b− y)e−jβz

)
ẑ
(
jβh sin

nπx

a
sinh(b− y)e−jβz

)
From this expression we see that the at y = b, the electric fields Ex, Ez = 0 so there is no parallel electric
fields to the top boundary. At x = 0, x = a the field Ey = 0 so there is no parallel electric field to the side
walls. All boundary conditions are met with this ansantz.

Now we have to impose the continuity expressions at y = t. Ex must be continuous and Hz is continuous,

A` sin `t = Bh sinhd

−Aεr cos `t = B sinhd

if we divide the two equations, we obtain a transcendental equation,

−` tan `t = εrh tanhd (4)

Equation 3 and equation 4 together is the key to finding the modal structure. Just like the LSE analysis
we have done above, there’s physical insight to keep in mind or you’ll miss key physical features of this system.

Key features of analytic expressions
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i ` and h are the wavenumbers in the dielectric and air region of the waveguide.

ii h is allowed to be real or imaginary.

iii A real h indicates propagation of power in both the dielectric and air regions.

iv An imaginary h has power propagating along the dielectric only, with evanescent modes in the air region.
This is just like an optical fiber.

v Even if we have a solution to the transcendental equation, the mode may not propagate. We have to
check whether β is real or imaginary.

vi Modes with n = 1 are the lowest order modes. There is no corresponding mode to a unloaded rectangular
waveguide.

Example We can take one example to illustrate the solution process, and the method parallels the one
outlied in LSE mode. We plot the function 4 in h space (which is k-space for the upper portion of the
waveguide). The zeros mark the modes. We use dimensions inspired by WR-10 with a = 2.54mm, b =
1.27mm, a 0.05mm thick εr = 4 dielectric. We analyze the system at two frequencies f0 = 100, 200GHz.

Figure 7: The zeros of the functions illustrates modes in the rectangular waveguide that is bottom loaded
with a dielectric slab. Left shows 100GHz while right is 200GHz.

There is one solution with purely imaginary h corresponding to modes of total internal reflection inside
the dielectric. The modes with purely real h corresponds to propagating modes in both media. The contour
plot in blue shows the real part of β. At 100GHz only the evanescent mode propagates but at higher
frequency there are two dielectric modes and one hybrid mode.

HFSS Confirmation We can simulate this geometry easily in HFSS. We illustrate three modes. However
the first two modes correspond to the zero near h = 2560j, and differ because n = 1 and n = 2. The third
mode has h = 1380, n = 1.

Take away points This analysis shows that at low frequency modes are non-ideal to couple to TE10. At
high frequencies, we have modes that are quasi-TEn0 (like in figure 8c). ~E fields will point in the ŷ direction,
but also have non-zero Ex components. This suggests that if we make a waveguide cavity, coupling with the
TE10 mode, we will see more defined resonant features in the high frequency range. However because the
fields are not exactly TE10, we will not get perfect coupling on resonance. Contrast this with the previous
analysis where the low order modes behave exactly like TEn0. This analysis suggests the side loaded dielectric
would provide a cleaner signal.
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(a)
(b)

(c)

Figure 8: ~E field distributions of simulated waveguide modes. (a) shows the fundamental mode, with power
propagating along the dielectric and evanescent in air. The lowest mode is n = 1. (b) shows the next mode,
which is the next dielectric mode. It has the same purely imaginary h as (a), but is n = 2. (c) shows a
hybrid propagation mode

2 Waveguide Cavity setup

2.1 Bottom Filled dielectric

2.2 Side filled dielectric
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;

(a)

(b) (c)

Figure 9: (a) geometry of the simulation with corresponding (b) S-parameters and (c) power absorbed by
the dielectric. We see that more power is dissipated in the dielectric at higher frequencies, because higher
frequency modes are more aligned with the TE10 mode, so more power is injected into the cavity.
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;

(a)

(b) (c)

Figure 10: (a) geometry of the simulation with corresponding (b) S-parameters and (c) power absorbed
by the dielectric. Because we have a small cavity with the TEn0 mode in band, we get a clean signal.
The difficulty is figuring out whether dissipation from the microwave cavity is through dielectric or through
radiative losses.
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